HifiGAN is a neural vocoder model for text-to-speech applications. It is intended as the second part of a two-stage speech synthesis pipeline, with a mel-spectrogram generator such as FastPitch as the first stage.
HifiGAN is a neural vocoder based on a generative adversarial network framework, During training, the model uses a powerful discriminator consisting of small sub-discriminators, each one focusing on specific periodic parts of a raw waveform. The generator is very fast and has a small footprint, while producing high quality speech.
This model is trained on LJSpeech sampled at 22050Hz.
HifiGAN is intended to be used as the second part of a two stage speech synthesis pipeline. HifiGAN takes a mel spectrogram and returns audio.
N/A
HifiGAN paper: https://arxiv.org/abs/2010.05646
By downloading and using the models and resources packaged with TAO Conversational AI, you would be accepting the terms of the Riva license
NVIDIA’s platforms and application frameworks enable developers to build a wide array of AI applications. Consider potential algorithmic bias when choosing or creating the models being deployed. Work with the model’s developer to ensure that it meets the requirements for the relevant industry and use case; that the necessary instruction and documentation are provided to understand error rates, confidence intervals, and results; and that the model is being used under the conditions and in the manner intended.