A pre-trained Swin UNETR [1,2] for volumetric (3D) multi-organ segmentation using CT images from Beyond the Cranial Vault (BTCV) Segmentation Challenge dataset [3].
The training data is from the BTCV dataset (Register through Synapse
and download the Abdomen/RawData.zip
).
The dataset format needs to be redefined using the following commands:
unzip RawData.zip
mv RawData/Training/img/ RawData/imagesTr
mv RawData/Training/label/ RawData/labelsTr
mv RawData/Testing/img/ RawData/imagesTs
The training as performed with the following:
If you face memory issues with CacheDataset, you can either switch to a regular Dataset class or lower the caching rate cache_rate
in the configurations within range [0, 1] to minimize the System RAM requirements.
1 channel
14 channels:
Dice score was used for evaluating the performance of the model. This model achieves a mean dice score of 0.82
The swin_unetr
bundle supports acceleration with TensorRT. The table below displays the speedup ratios observed on an A100 80G GPU. Please note that 32-bit precision models are benchmarked with tf32 weight format.
method | torch_tf32(ms) | torch_amp(ms) | trt_tf32(ms) | trt_fp16(ms) | speedup amp | speedup tf32 | speedup fp16 | amp vs fp16 |
---|---|---|---|---|---|---|---|---|
model computation | 123.64 | 123.77 | 93.22 | 42.87 | 1.00 | 1.33 | 2.88 | 2.89 |
end2end | 5102 | 4895 | 2863 | 2835 | 1.04 | 1.78 | 1.80 | 1.73 |
Where:
model computation
means the speedup ratio of model's inference with a random input without preprocessing and postprocessingend2end
means run the bundle end-to-end with the TensorRT based model.torch_tf32
and torch_amp
are for the PyTorch models with or without amp
mode.trt_tf32
and trt_fp16
are for the TensorRT based models converted in corresponding precision.speedup amp
, speedup tf32
and speedup fp16
are the speedup ratios of corresponding models versus the PyTorch float32 modelamp vs fp16
is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.This result is benchmarked under:
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
For more details usage instructions, visit the MONAI Bundle Configuration Page.
python -m monai.bundle run --config_file configs/train.json
Please note that if the default dataset path is not modified with the actual path in the bundle config files, you can also override it by using --dataset_dir
:
python -m monai.bundle run --config_file configs/train.json --dataset_dir <actual dataset path>
train
config to execute multi-GPU training:torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/multi_gpu_train.json']"
Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove --standalone
, modify --nnodes
, or do some other necessary changes according to the machine used. For more details, please refer to pytorch's official tutorial.
train
config to execute evaluation with the trained model:python -m monai.bundle run --config_file "['configs/train.json','configs/evaluate.json']"
python -m monai.bundle run --config_file configs/inference.json
python -m monai.bundle run --config_file "['configs/inference.json', 'configs/inference_trt.json']"
[1] Hatamizadeh, Ali, et al. "Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images." arXiv preprint arXiv:2201.01266 (2022). https://arxiv.org/abs/2201.01266.
[2] Tang, Yucheng, et al. "Self-supervised pre-training of swin transformers for 3d medical image analysis." arXiv preprint arXiv:2111.14791 (2021). https://arxiv.org/abs/2111.14791.
[3] Landman B, et al. "MICCAI multi-atlas labeling beyond the cranial vault–workshop and challenge." In Proc. of the MICCAI Multi-Atlas Labeling Beyond Cranial Vault—Workshop Challenge 2015 Oct (Vol. 5, p. 12).
Copyright (c) MONAI Consortium
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.