A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data. The whole pipeline is modified from clara_pt_brain_mri_segmentation.
The model is trained to segment 3 nested subregions of primary brain tumors (gliomas): the "enhancing tumor" (ET), the "tumor core" (TC), the "whole tumor" (WT) based on 4 aligned input MRI scans (T1c, T1, T2, FLAIR).
The training data is from the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018.
The provided labelled data was partitioned, based on our own split, into training (200 studies), validation (42 studies) and testing (43 studies) datasets.
The data list/split can be created with the script scripts/prepare_datalist.py
.
python scripts/prepare_datalist.py --path your-brats18-dataset-path
This model utilized a similar approach described in 3D MRI brain tumor segmentation using autoencoder regularization, which was a winning method in BraTS2018 [1]. The training was performed with the following:
4 channel aligned MRIs at 1 x 1 x 1 mm
3 channels
Dice score was used for evaluating the performance of the model. This model achieved Dice scores on the validation data of:
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
For more details usage instructions, visit the MONAI Bundle Configuration Page.
python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
train
config to execute multi-GPU training:torchrun --standalone --nnodes=1 --nproc_per_node=8 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove --standalone
, modify --nnodes
, or do some other necessary changes according to the machine used. For more details, please refer to pytorch's official tutorial.
train
config to execute evaluation with the trained model:python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf
python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
[1] Myronenko, Andriy. "3D MRI brain tumor segmentation using autoencoder regularization." International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654.
This training and inference pipeline was developed by NVIDIA. It is based on a model developed by NVIDIA researchers. This software has not been cleared or approved by FDA or any regulatory agency. MONAI pre-trained models are for developmental purposes only and cannot be used directly for clinical procedures.
Copyright (c) MONAI Consortium
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.