NGC Catalog
CLASSIC
Welcome Guest
Containers
NVIDIA ToolTalk

NVIDIA ToolTalk

For copy image paths and more information, please view on a desktop device.
Logo for NVIDIA ToolTalk
Description
NVIDIA Evals Factory-compatible container with ToolTalk support
Publisher
NVIDIA
Latest Tag
25.04
Modified
April 23, 2025
Compressed Size
3.06 GB
Multinode Support
No
Multi-Arch Support
No
25.04 (Latest) Security Scan Results
No results available.

NVIDIA Evals Factory

The goal of NVIDIA Evals Factory is to advance and refine state-of-the-art methodologies for model evaluation, and deliver them as modular evaluation packages (evaluation containers and pip wheels) that teams can use as standardized building blocks.

Quick start guide

NVIDIA Evals Factory provide you with evaluation clients, that are specifically built to evaluate model endpoints using our Standard API.

Launching an evaluation for an LLM

  1. Install the package

    pip install nvidia-tooltalk
    
  2. (Optional) Set a token to your API endpoint if it's protected

    export MY_API_KEY="your_api_key_here"
    
  3. List the available evaluations:

    $ core_evals_tooltalk ls
    Available tasks:
    * tooltalk (in tooltalk)
    ...
    
  4. Run the evaluation of your choice:

    core_evals_tooltalk run_eval \
        --eval_type tooltalk \
        --model_id meta/llama-3.1-70b-instruct \
        --model_url https://integrate.api.nvidia.com/v1/chat/completions \
        --model_type chat \
        --api_key_name MY_API_KEY \
        --output_dir /workspace/results
    
  5. Gather the results

    cat /workspace/results/results.yml
    

Command-Line Tool

Each package comes pre-installed with a set of command-line tools, designed to simplify the execution of evaluation tasks. Below are the available commands and their usage for the tooltalk:

Commands

1. List Evaluation Types

core_evals_tooltalk ls

Displays the evaluation types available within the harness.

2. Run an evaluation

The core_evals_tooltalk run_eval command executes the evaluation process. Below are the flags and their descriptions:

Required flags

  • --eval_type <string> The type of evaluation to perform
  • --model_id <string> The name or identifier of the model to evaluate.
  • --model_url <url> The API endpoint where the model is accessible.
  • --model_type <string> The type of the model to evaluate, for tooltalk it should be "chat"
  • --output_dir <directory> The directory to use as the working directory for the evaluation. The results, including the results.yml output file, will be saved here.

Optional flags

  • --api_key_name <string> The name of the environment variable that stores the Bearer token for the API, if authentication is required.
  • --run_config <path> Specifies the path to a YAML file containing the evaluation definition.

Example

core_evals_tooltalk run_eval \
    --eval_type tooltalk \
    --model_id my_model \
    --model_type chat \
    --model_url http://localhost:8000 \
    --output_dir ./evaluation_results

If the model API requires authentication, set the API key in an environment variable and reference it using the --api_key_name flag:

export MY_API_KEY="your_api_key_here"

core_evals_tooltalk run_eval \
    --eval_type tooltalk \
    --model_id my_model \
    --model_type chat \
    --model_url http://localhost:8000 \
    --api_key_name MY_API_KEY \
    --output_dir ./evaluation_results

Configuring evaluations via YAML

Evaluations in NVIDIA Evals Factory are configured using YAML files that define the parameters and settings required for the evaluation process. These configuration files follow a standard API which ensures consistency across evaluations.

Example of a YAML config:

config:
  type: tooltalk
  params:
    limit_samples: 20
target:
  api_endpoint:
    model_id: meta/llama-3.1-8b-instruct
    type: chat
    url: https://integrate.api.nvidia.com/v1/chat/completions
    api_key: NVIDIA_API_KEY

The priority of overrides is as follows:

  1. command line arguments
  2. user config (as seen above)
  3. task defaults (defined per task type)
  4. framework defaults

--dry_run option allows you to print the final run configuration and command without executing the evaluation.

Example:

core_evals_tooltalk run_eval \
    --eval_type tooltalk \
    --model_id my_model \
    --model_type chat \
    --model_url http://localhost:8000 \
    --output_dir .evaluation_results \
    --dry_run

Output:

Rendered config:

command: '{% if target.api_endpoint.api_key is not none %}API_KEY=${{target.api_endpoint.api_key}}{%
  endif %} tooltalk --dataset data/easy --database data/databases --model {{target.api_endpoint.model_id}}
  --output_dir {{config.output_dir}} --url {{target.api_endpoint.url}} {% if config.params.limit_samples
  is not none %}--first_n {{config.params.limit_samples}}{% endif %}'
framework_name: tooltalk
pkg_name: tooltalk
config:
  output_dir: .evaluation_results
  params:
    limit_samples: null
    max_new_tokens: null
    max_retries: null
    parallelism: null
    task: tooltalk
    temperature: null
    timeout: null
    top_p: null
    extra: {}
  supported_endpoint_types:
  - chat
  type: tooltalk
target:
  api_endpoint:
    api_key: null
    model_id: my_model
    stream: null
    type: chat
    url: http://localhost:8000


Rendered command:

tooltalk --dataset data/easy --database data/databases --model my_model --output_dir .evaluation_results --url http://localhost:8000 

FAQ

Deploying a model as an endpoint

NVIDIA Evals Factory utilize a client-server communication architecture to interact with the model. As a prerequisite, the model must be deployed as an endpoint with a NIM-compatible API.

Users have the flexibility to deploy their model using their own infrastructure and tooling.

Servers with APIs that conform to the OpenAI/NIM API standard are expected to work seamlessly out of the box.