NGC Catalog
CLASSIC
Welcome Guest
Containers
NVIDIA Simple-Evals

NVIDIA Simple-Evals

For copy image paths and more information, please view on a desktop device.
Description
NVIDIA Evals Factory-compatible container with Simple-Evals support
Publisher
NVIDIA
Latest Tag
25.04.1
Modified
May 8, 2025
Compressed Size
221.7 MB
Multinode Support
No
Multi-Arch Support
No
25.04.1 (Latest) Security Scan Results

Linux / amd64

Sorry, your browser does not support inline SVG.

NVIDIA Evals Factory

The goal of NVIDIA Evals Factory is to advance and refine state-of-the-art methodologies for model evaluation, and deliver them as modular evaluation packages (evaluation containers and pip wheels) that teams can use as standardized building blocks.

Quick start guide

NVIDIA Evals Factory provide you with evaluation clients, that are specifically built to evaluate model endpoints using our Standard API.

Launching an evaluation for an LLM

  1. List the available evaluations:
    $ core_evals_simple_evals ls
    Available tasks:
    * AA_AIME_2024 (in simple_evals)
    * AA_math_test_500 (in simple_evals)
    * AIME_2024 (in simple_evals)
    * AIME_2025 (in simple_evals)
    * gpqa_diamond (in simple_evals)
    * gpqa_experts (in simple_evals)
    * gpqa_extended (in simple_evals)
    * gpqa_main (in simple_evals)
    * humaneval (in simple_evals)
    * humanevalplus (in simple_evals)
    * math_test_500 (in simple_evals)
    * mgsm (in simple_evals)
    * mmlu (in simple_evals)
    * mmlu_AR-XY (in simple_evals)
    * mmlu_BN-BD (in simple_evals)
    * mmlu_DE-DE (in simple_evals)
    * mmlu_EN-US (in simple_evals)
    * mmlu_ES-LA (in simple_evals)
    * mmlu_FR-FR (in simple_evals)
    * mmlu_HI-IN (in simple_evals)
    * mmlu_ID-ID (in simple_evals)
    * mmlu_IT-IT (in simple_evals)
    * mmlu_JA-JP (in simple_evals)
    * mmlu_KO-KR (in simple_evals)
    * mmlu_PT-BR (in simple_evals)
    * mmlu_SW-KE (in simple_evals)
    * mmlu_YO-NG (in simple_evals)
    * mmlu_ZH-CN (in simple_evals)
    * mmlu_pro (in simple_evals)
    * simpleqa (in simple_evals)
    
  2. Run the evaluation of your choice:
    core_evals_simple_evals run_eval \
        --eval_type mmlu_pro \
        --model_id meta/llama-3.1-70b-instruct \
        --model_url https://integrate.api.nvidia.com/v1/chat/completions \
        --model_type chat \
        --api_key_name MY_API_KEY \
        --output_dir /workspace/results
    
  3. Gather the results
    cat /workspace/results/results.yml
    

Command-Line Tool

Each package comes pre-installed with a set of command-line tools, designed to simplify the execution of evaluation tasks. Below are the available commands and their usage for the simple_evals:

Commands

1. List Evaluation Types

core_evals_simple_evals ls

Displays the evaluation types available within the harness.

2. Run an evaluation

The core_evals_simple_evals run_eval command executes the evaluation process. Below are the flags and their descriptions:

Required flags

  • --eval_type <string> The type of evaluation to perform
  • --model_id <string> The name or identifier of the model to evaluate.
  • --model_url <url> The API endpoint where the model is accessible.
  • --model_type <string> The type of the model to evaluate, currently either "chat", "completions", or "vlm".
  • --output_dir <directory> The directory to use as the working directory for the evaluation. The results, including the results.yml output file, will be saved here.

Optional flags

  • --api_key_name <string> The name of the environment variable that stores the Bearer token for the API, if authentication is required.
  • --run_config <path> Specifies the path to a YAML file containing the evaluation definition.

Example

core_evals_simple_evals run_eval \
    --eval_type AIME_2025 \
    --model_id my_model \
    --model_type chat \
    --model_url http://localhost:8000 \
    --output_dir ./evaluation_results

If the model API requires authentication, set the API key in an environment variable and reference it using the --api_key_name flag:

export MY_API_KEY="your_api_key_here"

core_evals_simple_evals run_eval \
    --eval_type AIME_2025 \
    --model_id my_model \
    --model_type chat \
    --model_url http://localhost:8000 \
    --api_key_name MY_API_KEY \
    --output_dir ./evaluation_results

Configuring evaluations via YAML

Evaluations in NVIDIA Evals Factory are configured using YAML files that define the parameters and settings required for the evaluation process. These configuration files follow a standard API which ensures consistency across evaluations.

Example of a YAML config:

config:
  type: AIME_2025
  params:
    parallelism: 50
    limit_samples: 20
target:
  api_endpoint:
    model_id: meta/llama-3.1-8b-instruct
    type: chat
    url: https://integrate.api.nvidia.com/v1/chat/completions
    api_key: NVIDIA_API_KEY

The priority of overrides is as follows:

  1. command line arguments
  2. user config (as seen above)
  3. task defaults (defined per task type)
  4. framework defaults

--dry_run option allows you to print the final run configuration and command without executing the evaluation.

Example:

core_evals_simple_evals run_eval \
    --eval_type AIME_2025 \
    --model_id my_model \
    --model_type chat \
    --model_url http://localhost:8000 \
    --output_dir .evaluation_results \
    --dry_run

Output:

Rendered config:

command: '{% if target.api_endpoint.api_key is not none %}export API_KEY=${{target.api_endpoint.api_key}}
  && {% endif %} simple_evals --model {{target.api_endpoint.model_id}} --eval_name
  {{config.params.task}} --url {{target.api_endpoint.url}} --temperature {{config.params.temperature}}
  --top_p {{config.params.top_p}} --max_tokens {{config.params.max_new_tokens}} --out_dir
  {{config.output_dir}} --cache_dir {{config.output_dir}}/cache --num_threads {{config.params.parallelism}}
  --max_retries {{config.params.max_retries}} --timeout {{config.params.request_timeout}}
  {% if config.params.extra.n_samples is defined %} --num_repeats {{config.params.extra.n_samples}}{%
  endif %} {% if config.params.limit_samples is not none %} --first_n {{config.params.limit_samples}}{%
  endif %} {% if config.params.extra.add_system_prompt  %} --add_system_prompt {%
  endif %} {% if config.params.extra.args is defined %} {{ config.params.extra.args
  }} {% endif %}'
framework_name: simple_evals
pkg_name: simple_evals
config:
  output_dir: .evaluation_results
  params:
    limit_samples: null
    max_new_tokens: 4096
    max_retries: 5
    parallelism: 10
    task: AIME_2025
    temperature: 0.0
    request_timeout: 60
    top_p: 1.0e-05
    extra:
      add_system_prompt: false
  supported_endpoint_types:
  - chat
  type: AIME_2025
target:
  api_endpoint:
    api_key: null
    model_id: my_model
    stream: null
    type: chat
    url: http://localhost:8000


Rendered command:

 simple_evals --model my_model --eval_name AIME_2025 --url http://localhost:8000 --temperature 0.0 --top_p 1e-05 --max_tokens 4096 --out_dir .evaluation_results --cache_dir .evaluation_results/cache --num_threads 10 --max_retries 5 --timeout 60 

FAQ

Deploying a model as an endpoint

NVIDIA Evals Factory utilize a client-server communication architecture to interact with the model. As a prerequisite, the model must be deployed as an endpoint with a NIM-compatible API.

Users have the flexibility to deploy their model using their own infrastructure and tooling.

Servers with APIs that conform to the OpenAI/NIM API standard are expected to work seamlessly out of the box.

Providing llm-as-a-judge keys to Math benchmarks

For the gpt judge

export OPENAI_CLIENT_ID=...
export OPENAI_CLIENT_SECRET=...

For the llama 3.3 70b judge (for AA_math_test_500 and AA_AIME_2024)

export JUDGE_API_KEY=...