NGC Catalog
CLASSIC
Welcome Guest
Containers
NVIDIA helm

NVIDIA helm

For copy image paths and more information, please view on a desktop device.
Description
NVIDIA Evals Factory-compatible container with CRFM Helm support
Publisher
NVIDIA
Latest Tag
25.07.2
Modified
August 7, 2025
Compressed Size
3.44 GB
Multinode Support
No
Multi-Arch Support
No
25.07.2 (Latest) Security Scan Results

Linux / amd64

Sorry, your browser does not support inline SVG.

NVIDIA Evals Factory

The goal of NVIDIA Evals Factory is to advance and refine state-of-the-art methodologies for model evaluation, and deliver them as modular evaluation packages (evaluation containers and pip wheels) that teams can use as standardized building blocks.

Quick start guide: Evaluation containers

NVIDIA Evals Factory containers provide you with evaluation clients, that are specifically built to evaluate model endpoints using our Standard API.

Prerequisites

  1. Ensure docker is installed and running on the machine where you want to run the evaluation.
  2. Verify you have access to NVIDIA Evals Factory container registry.
  3. Deploy your model as an endpoint with an API compatible with OpenAI or NIM.

Launching an evaluation for an LLM

  1. Pull the LLM evaluation container image
  2. Run the container
  3. (Optional) Set a token to your API endpoint if it's protected
    export MY_API_KEY="your_api_key_here"
    
  4. List the available evaluations:
    $ eval-factory ls
    helm:
      * medcalc_bench
      * medec
      * head_qa
      * medbullets
      * pubmed_qa
      * ehr_sql
      * race_based_med
      * medhallu
    ...
    
  5. Run the evaluation of your choice:
    eval-factory run_eval \
        --eval_type head_qa \
        --model_id meta/llama-3.1-70b-instruct \
        --model_url https://integrate.api.nvidia.com/v1/chat/completions \
        --model_type chat \
        --api_key_name MY_API_KEY \
        --output_dir /workspace/results
    
  6. Gather the results
cat /workspace/results/results.yml

Command-Line Tool

Each container comes pre-installed with a set of command-line tools, designed to simplify the execution of evaluation tasks. Below are the available commands and their usage for the lm_eval (lm-evaluation-harness):

Commands

1. List Evaluation Types

eval-factory ls

Displays the evaluation types available within the harness.

2. Run an evaluation

The eval-factory run_eval command executes the evaluation process. Below are the flags and their descriptions:

Required flags

  • --eval_type <string> The type of evaluation to perform
  • --model_id <string> The name or identifier of the model to evaluate.
  • --model_url <url> The API endpoint where the model is accessible.
  • --model_type <string> The type of the model to evaluate, currently either "chat", "completions", or "vlm".
  • --output_dir <directory> The directory to use as the working directory for the evaluation. The results, including the results.yml output file, will be saved here.

Optional flags

  • --api_key_name <string> The name of the environment variable that stores the Bearer token for the API, if authentication is required.
  • --run_config <path> Specifies the path to a YAML file containing the evaluation definition.

Example

eval-factory run_eval \
    --eval_type ifeval \
    --model_id my_model \
    --model_type chat \
    --model_url http://localhost:8000 \
    --output_dir ./evaluation_results

If the model API requires authentication, set the API key in an environment variable and reference it using the --api_key_name flag:

export MY_API_KEY="your_api_key_here"

eval-factory run_eval \
    --eval_type head_qa \
    --model_id my_model \
    --model_type chat \
    --model_url http://localhost:8000 \
    --api_key_name MY_API_KEY \
    --output_dir ./evaluation_results

Configuring evaluations via YAML

Evaluations in NVIDIA Evals Factory are configured using YAML files that define the parameters and settings required for the evaluation process. These configuration files follow a standard API which ensures consistency across evaluations.

Example of a YAML config:

config:
  type: head_qa
  params:
    parallelism: 50
    limit_samples: 20
target:
  api_endpoint:
    model_id: meta/llama-3.1-8b-instruct
    type: chat
    url: https://integrate.api.nvidia.com/v1/chat/completions
    api_key: NVIDIA_API_KEY

The priority of overrides is as follows:

  1. command line arguments
  2. user config (as seen above)
  3. task defaults (defined per task type)
  4. framework defaults

--dry_run option allows you to print the final run configuration and command without executing the evaluation.

Example:

eval-factory run_eval \
    --eval_type head_qa \
    --model_id my_model \
    --model_type chat \
    --model_url http://localhost:8000 \
    --output_dir .evaluation_results \
    --dry_run

Output:

Rendered config:


    max_new_tokens: null
    max_retries: null
    parallelism: 1
    task: head_qa
    temperature: null
    request_timeout: null
    top_p: null
    extra:
      data_path: null
      num_output_tokens: null
      subject: null
      condition: null
      max_length: null
      num_train_trials: null
  supported_endpoint_types:
  - chat
  type: head_qa
target:
  api_endpoint:
    api_key: null
    model_id: my_model
    stream: null
    type: chat
    url: http://localhost:8000
    adapter_config: null


Rendered command:

 helm-generate-dynamic-model-configs  --model-name my_model  --base-url http://localhost:8000  --openai-model-name my_model  --output-dir .evaluation_results && helm-run  --run-entries head_qa:model=my_model    -n 1   --suite head_qa        -o .evaluation_results  --local-path .evaluation_results

FAQ

Deploying a model as an endpoint

NVIDIA Evals Factory containers utilize a client-server communication architecture to interact with the model. As a prerequisite, the model must be deployed as an endpoint with a NIM-compatible API.

Users have the flexibility to deploy their model using their own infrastructure and tooling.

Servers with APIs that conform to the OpenAI/NIM API standard are expected to work seamlessly out of the box.