Linux / amd64
The goal of NVIDIA Evals Factory is to advance and refine state-of-the-art methodologies for model evaluation, and deliver them as modular evaluation packages (evaluation containers and pip wheels) that teams can use as standardized building blocks.
NVIDIA Evals Factory containers provide you with evaluation clients, that are specifically built to evaluate model endpoints using our Standard API.
export MY_API_KEY="your_api_key_here"
$ eval-factory ls
helm:
* medcalc_bench
* medec
* head_qa
* medbullets
* pubmed_qa
* ehr_sql
* race_based_med
* medhallu
...
eval-factory run_eval \
--eval_type head_qa \
--model_id meta/llama-3.1-70b-instruct \
--model_url https://integrate.api.nvidia.com/v1/chat/completions \
--model_type chat \
--api_key_name MY_API_KEY \
--output_dir /workspace/results
cat /workspace/results/results.yml
Each container comes pre-installed with a set of command-line tools, designed to simplify the execution of evaluation tasks. Below are the available commands and their usage for the lm_eval
(lm-evaluation-harness
):
eval-factory ls
Displays the evaluation types available within the harness.
The eval-factory run_eval
command executes the evaluation process. Below are the flags and their descriptions:
--eval_type <string>
The type of evaluation to perform--model_id <string>
The name or identifier of the model to evaluate.--model_url <url>
The API endpoint where the model is accessible.--model_type <string>
The type of the model to evaluate, currently either "chat", "completions", or "vlm".--output_dir <directory>
The directory to use as the working directory for the evaluation. The results, including the results.yml output file, will be saved here.--api_key_name <string>
The name of the environment variable that stores the Bearer token for the API, if authentication is required.--run_config <path>
Specifies the path to a YAML file containing the evaluation definition.eval-factory run_eval \
--eval_type ifeval \
--model_id my_model \
--model_type chat \
--model_url http://localhost:8000 \
--output_dir ./evaluation_results
If the model API requires authentication, set the API key in an environment variable and reference it using the --api_key_name
flag:
export MY_API_KEY="your_api_key_here"
eval-factory run_eval \
--eval_type head_qa \
--model_id my_model \
--model_type chat \
--model_url http://localhost:8000 \
--api_key_name MY_API_KEY \
--output_dir ./evaluation_results
Evaluations in NVIDIA Evals Factory are configured using YAML files that define the parameters and settings required for the evaluation process. These configuration files follow a standard API which ensures consistency across evaluations.
Example of a YAML config:
config:
type: head_qa
params:
parallelism: 50
limit_samples: 20
target:
api_endpoint:
model_id: meta/llama-3.1-8b-instruct
type: chat
url: https://integrate.api.nvidia.com/v1/chat/completions
api_key: NVIDIA_API_KEY
The priority of overrides is as follows:
--dry_run
option allows you to print the final run configuration and command without executing the evaluation.
eval-factory run_eval \
--eval_type head_qa \
--model_id my_model \
--model_type chat \
--model_url http://localhost:8000 \
--output_dir .evaluation_results \
--dry_run
Output:
Rendered config:
max_new_tokens: null
max_retries: null
parallelism: 1
task: head_qa
temperature: null
request_timeout: null
top_p: null
extra:
data_path: null
num_output_tokens: null
subject: null
condition: null
max_length: null
num_train_trials: null
supported_endpoint_types:
- chat
type: head_qa
target:
api_endpoint:
api_key: null
model_id: my_model
stream: null
type: chat
url: http://localhost:8000
adapter_config: null
Rendered command:
helm-generate-dynamic-model-configs --model-name my_model --base-url http://localhost:8000 --openai-model-name my_model --output-dir .evaluation_results && helm-run --run-entries head_qa:model=my_model -n 1 --suite head_qa -o .evaluation_results --local-path .evaluation_results
NVIDIA Evals Factory containers utilize a client-server communication architecture to interact with the model. As a prerequisite, the model must be deployed as an endpoint with a NIM-compatible API.
Users have the flexibility to deploy their model using their own infrastructure and tooling.
Servers with APIs that conform to the OpenAI/NIM API standard are expected to work seamlessly out of the box.