EfficientNets are a family of image classification models, which achieve state-of-the-art accuracy, being an order-of-magnitude smaller and faster.
EfficientNets are developed based on AutoML and Compound Scaling. In particular, a mobile-size baseline network called EfficientNet-B0 is developed from AutoML MNAS Mobile framework, the building block is mobile inverted bottleneck MBConv with squeeze-and-excitation optimization. Then, through a compound scaling method, this baseline is scaled up to obtain EfficientNet-B1 to B7.
This model was trained using script available on NGC and in GitHub repo
The following datasets were used to train this model:
Performance numbers for this model are available in NGC
This model was trained using open-source software available in Deep Learning Examples repository. For terms of use, please refer to the license of the script and the datasets the model was derived from.