NGC Catalog
CLASSIC
Welcome Guest
Models
EfficientDet-D0 backbone checkpoint (Pytorch, AMP)

EfficientDet-D0 backbone checkpoint (Pytorch, AMP)

For downloads and more information, please view on a desktop device.
Logo for EfficientDet-D0 backbone checkpoint (Pytorch, AMP)
Description
EfficientDet-D0 Backbone EfficientNet-B0 Pytorch checkpoint trained on Imagenet, preprocessed to use as backbone
Publisher
NVIDIA Deep Learning Examples
Latest Version
21.06.0_amp
Modified
September 22, 2022
Size
20.45 MB

Model Overview

A convolution-based neural network for the task of object detection.

Model Architecture

EfficientDet is a one-stage detector with the following architecture components:

  • ImageNet-pretrained EfficientNet backbone
  • Weighted bi-directional feature pyramid network (BiFPN)
  • Bounding and classification box head
  • A compound scaling method that uniformly scales the resolution, depth, and width for all backbone, feature network, and box/class prediction networks at the same time

Training

This model was trained using script available on NGC and in GitHub repo.

Dataset

The following datasets were used to train this model:

  • COCO 2017 - Dataset for large-scale object detection, segmentation and captioning.

Performance

Performance numbers for this model are available in NGC.

References

  • Original paper
  • NVIDIA model implementation in NGC
  • NVIDIA model implementation on GitHub

License

This model was trained using open-source software available in Deep Learning Examples repository. For terms of use, please refer to the license of the script and the datasets the model was derived from.