This is part 1 of TAO workflow on Vertex AI. For part 2, refer to Inference TAO Action Recognition using Quick Deploy resource.
The NVIDIA TAO Toolkit, an AI training toolkit which simplifies the model training and inference optimization process using pretrained models and simple CLI interface. The result is an ultra-streamlined workflow. Bring your own models or use NVIDIA pre-trained models and adapt them to your own real or synthetic data, then optimize for inference throughput. All without needing AI expertise or large training datasets.
TAO Toolkit workflows can be deployed on Google Vertex AI using the Quick Deploy.
The quick deploy feature automatically sets up the Vertex AI instance with an optimal configuration, preloads the dependencies, runs the software from NGC without any need to set up the infrastructure.
In this workflow, you will train and optimize an action recognition model using ActionRecognitionNet pretrained model and TAO. TAO Action Recognition is a configurable model to train a 2D or 3D neural network using the ResNet backbone. The pretrained model that you use for training has been trained on 5 classes from the HMDB51 dataset. More information about this model can be found in ActionRecognitionNet model card.
To help you get started, we have created a few Jupyter Notebooks that can be easily deployed on Vertex AI using NGC’s quick deploy feature. This feature automatically sets up the Vertex AI instance with an optimal configuration needed for training the model.
The workflow is divided into 2 Jupyter notebooks - one for training and one for model inference and optimization.
Use the notebook in this resource for model training. In this notebook, you will train a 3D action recognition model using HMDB51 dataset. In this notebook, you will only train on a handful of actions but you can modify the ‘spec’ files to add more actions.
In this notebook, you will learn how to leverage the simplicity and convenience of TAO to:
Simply click on the button that reads “Deploy to Vertex AI” and follow the instructions.
Note: A customized kernel for the Jupyter Notebook is used as the primary mechanism for deployment. This kernel has been built on the TAO Toolkit container. For more information on the container itself, please refer to this link for more information:
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/containers/tao-toolkit
The container version for this notebooks is nvcr.io/nvidia/tao/tao-toolkit:4.0.0-pyt
To evaluate and run inference on the trained model please refer to the Inference TAO Action Recognition using Quick Deploy resource.
By pulling and using the TAO Toolkit container, you accept the terms and conditions of these licenses.
NVIDIA’s platforms and application frameworks enable developers to build a wide array of AI applications. Consider potential algorithmic bias when choosing or creating the models being deployed. Work with the model’s developer to ensure that it meets the requirements for the relevant industry and use case; that the necessary instruction and documentation are provided to understand error rates, confidence intervals, and results; and that the model is being used under the conditions and in the manner intended.