GROMACS is a molecular dynamics application designed to simulate Newtonian equations of motion for systems with hundreds to millions of particles. GROMACS is designed to simulate biochemical molecules like proteins, lipids, and nucleic acids that have a lot of complicated bonded interactions.
Before running the NGC GROMACS container please ensure your system meets the following requirements.
The following examples demonstrate using the NGC GROMACS container to run the STMV
benchmark. Reference performance, on a range of systems, can be found at https://developer.nvidia.com/hpc-application-performance.
Throughout this example the container version will be referenced as $GROMACS_TAG
, replace this with the tag you wish to run.
Download the STMV
benchmark:
wget https://zenodo.org/record/3893789/files/GROMACS_heterogeneous_parallelization_benchmark_info_and_systems_JCP.tar.gz
tar xf GROMACS_heterogeneous_parallelization_benchmark_info_and_systems_JCP.tar.gz
cd GROMACS_heterogeneous_parallelization_benchmark_info_and_systems_JCP/stmv
Run GROMACS using 4 GPUs (with IDs 0,1,2,3). Here we use 2 thread-MPI tasks per GPU (-ntmpi 8), which we find gives good performance. We set 16 OpenMP threads per thread-MPI task (assuming at least 128 CPU cores in the system). These can be adjusted to map to any specific hardware system, and experimented with for best performance.
export GMX_ENABLE_DIRECT_GPU_COMM=1
DOCKER="docker run --gpus all -it --rm -v ${PWD}:/host_pwd --workdir /host_pwd nvcr.io/hpc/gromacs:${GROMACS_TAG}"
${DOCKER} gmx mdrun -ntmpi 8 -ntomp 16 -nb gpu -pme gpu -npme 1 -update gpu -bonded gpu -nsteps 100000 -resetstep 90000 -noconfout -dlb no -nstlist 300 -pin on -v -gpu_id 0123
export GMX_ENABLE_DIRECT_GPU_COMM=1
SINGULARITY="singularity run --nv -B ${PWD}:/host_pwd --pwd /host_pwd docker://nvcr.io/hpc/gromacs:${GROMACS_TAG}"
${SINGULARITY} gmx mdrun -ntmpi 8 -ntomp 16 -nb gpu -pme gpu -npme 1 -update gpu -bonded gpu -nsteps 100000 -resetstep 90000 -noconfout -dlb no -nstlist 300 -pin on -v -gpu_id 0123
NVIDIA Base Command Platform (BCP) offers a ready-to-use cloud-hosted solution that manages the end-to-end lifecycle of development, workflows, and resource management. Before running the commands below, install and configure the ngc cli, more information can be found here.
Upload the stmv
dataset using the command below
ngc dataset upload --source ./stmv/ --desc "GROMACS stmv dataset" gromacs_dataset
As a note: we must include the -g <md-log-path>
and -e <energy log path>
to the run command because the mounted working directory is read-only, we must set the paths for the output logs to a writable mounted directory
Single node on a single GPU running the stmv
dataset on 4 GPUs with 2 MPI threads per GPU and 15 OpenMP threads per thread-MPI task
for a total of 120 CPU cores.
ngc batch run --name "gromacs_reducentomp120cores" --priority NORMAL --order 50 --preempt RUNONCE --min-timeslice 0s --total-runtime 0s --ace <your-ace> --instance dgxa100.80g.4.norm --commandline "/usr/bin/nventry -build_base_dir=/usr/local/gromacs -build_default=avx2_256 gmx mdrun -g /results/md.log -e /results/ener.edr -ntmpi 8 -ntomp 15 -nb gpu -pme gpu -npme 1 -update gpu -bonded gpu -nsteps 100000 -resetstep 90000 -noconfout -dlb no -nstlist 300 -pin on -v -gpu_id 0123" --result /results/ --image "hpc/gromacs:2023.2" --org <your-org> --datasetid <dataset-id>:/host_pwd/